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SUMMARY 

Polystyrene, dextran and sodium dodecyl sulphate-protein data for eleven con- 
trolled-pore glasses have been used to validate the expression Kn = (b - R,/R,)Z 
derived from a geometrical exclusion model for cylindrical pores. The calculated pore 
radii (R,) agreed well with mercury-intrusion values, and the crucial role of Stokes’ 
radius (R,) was confirmed by comparison with Casassa’s formulations [E. F. Casassa 
and Y. Tagami, Macromolecules, 2 (1969) 14; E. F. Casassa, J. Polym. Sci., Part B, 
5 (1967) 7731. From theory it was demonstrated that for any molecule, R, = A M” 
where A and x are defined, structure-specific constants. Thus, linear I&(M) functions 
were derived and tested, by which one is able to distinguish between coils, rods and 
ellipsoids, ideal and real solvents, and to determine bond lengths, expansion, gyration 
radii, axial ratios and diffusion coefficients. The characteristic shape of the empirical 
J&log M curves derives directly from the linear I&(M) function. 

INTRODUCTION 

The mechanisms that give rise to chromatographic partition have been exten- 
sively investigated. There is now a consensus to regard partition as a diffusive quasi- 
equilibrium process, which depends on both size and shape of the permeating mol- 
ecule as expressed by the effective hydrodynamic radius. However, very little is known 
about the effect of the pore or cavity conformation and size. Controlled-pore glasses 
(CPG) are the most adequate medium for studying this problem, since these glasses 
can be obtained with extremely narrow pore distributions, so that the pore radii can 
be measured with high precision by means of mercury-intrusion porosimetry. 

Equations for the partition of random-flight polymer chains in rigid lamellar, 
spherical and cylindrical cavities have been formulated by Casassa and Tagami’ and 
applied to literature data for chromatography in CPG. 

On the other hand, on the basis of a simple geometrical exclusion model 
(GEM), equations for both glasses and gels have been derivedzF4 which take into 
account not only the shape of the pores or voids but also their size. In this paper the 
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GEM theory will be elaborated and applied to literature data for random coiled and 
rod-like molecules analysed in CPG of eleven different pore sizes. The GEM corre- 
lation between partition coefficient and molecular radius will be tested with respect 
to the calculated pore size, its assumed shape, and the requirement of using the 
hydrodynamic radius. The results will be compared with those obtained by Casassa5 
from the same experimental data. 

By combination with physicochemical rules for macromolecules, the equations 
are then extended to cover partition as a function of the molecular weight, for which 
no theory has so far been advanced. The specificity of this function will be described 
and substantiated by the experimental results. Moreover, it will be shown that fun- 
damental structural and thermodynamic parameters can be determined from the li- 
nearized GEM plots, a fact that conveys unsuspected perspectives to exclusion chro- 
matography. 

THEORY 

Partition as function of molecular radius and pore size 
In the following it is assumed that the average pore conformation in CPG can 

be represented by straight cylinders. Tubular pores have in fact been directly observed 
by means of scanning electron micrography l. We further consider the pore diameter 
to be uniform, as it is the case with the glasses prepared by Haller6v7 employed 
throughout the experiments described here. 

Let V, denote the elution volume, VO the extraporous solvent and 6 the intra- 
porous volume as measured by eluting a small solute molecule or by weighings under 
the usual non-equilibrium conditions. For an assembly of N rigid cylindrical pores 
with an average length H and radius R,, the measured pore volume is then 

K=NIzHR,~ (1) 

Since it is well established that small solvent molecules can diffuse into glass, the 
volume taken up by these molecules at equilibrium is larger than Vi, namely 

v = K + I’,, = NnH(R, + ~25)~ = NxH(K)~ (2) 

where V, is the solid volume of the hollow cylinder constituting the intravitreous 
diffusion layer, 6 its radius, and R’ denotes the overall pore radius (R, + 6). 

This implies that the volume available to the centre of mass of a solute molecule 
of radius R, is, evidently, N rr H(Rx - R,)Z, and the liquid volume required to elute 
this molecule from the pores is 

I’, - PO = N 7c H(R* - R# (3) 

where R, is the effective hydrodynamic (Stokes’) radius of a molecule. It is the basic 
parameter operative in all diffusion processes. Thus, for translational diffusion, 

R, = kB T/(6 71 rj Do) (4) 

with kB denoting the Boltzmann constant, r~ the solvent viscosity and Do the diffusion 
coefficient at zero diffusant concentration. 



EVALUATION OF STRUCTURE PARAMETERS. I. 3 

In consequence, the measured partition coefficient, KD, will slightly be larger 
than the real coefficient, Kn, since 

and from eqns. 1 and 3, KD can be expressed as 

(5) 

(6) 

Thus, a correlation of KfD vs. R, gives a straight line with a slope of -1/R,, an 
extrapolated ordinate intercept of b = (K/R,) > 1.00 and an abscissa intercept at 
R’. 

We now let RHg denote the pore radius measured by means of mercury-intru- 
sion porosimetry. Owing to interfacial tension, mercury molecules will not diffuse 
into glass, which implies that 

Rx = Rng (7) 

The validity of this equation is the crucial test of the GEM theory for porous glass. 
In order to perform this test, the molecular parameters used in the literature data 
treated below have to be converted into R, values before eqn. 6 is applied. If the 
identity R, = RHg is verified, the cylindrical pore shape is confirmed, as well as the 
fact that R, is the basic parameter in exclusion processes. This implies that the cor- 
relation between KD and the molecular weight must follow the R,(M) function for 
the particular chemical species. 

Stokes’ radius functions of the molecular weight 
In this section it is shown that for any molecule large enough to follow Stokes’ 

law, the radius can be expressed as 

R, = A M” (8) 

and that x and A are structure-specific constants that reflect hydrodynamic structure, 
axial ratios, bond lengths, partial specific volume and molecular expansion. The 
theory for most of the derivations is covered by advanced textbook&lo. 

Random coils. Random structures are evaluated statistically by means of the 
root-mean-square radius of gyration RG or (s2)*, given by 

RG = u /?(M/6 MO)+ (9) 

where a denotes a molecular expansion coefficient, /I the effective monomer-mono- 
mer bond length and MO the monomer molecular weight. The Stokes’ radius is 
obtained from 
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R. N 
0.6647 RG 

1 + 0.814a/(M/Ml# 
(10) 

which, for large values of M/MO, yields 

R, N 0.6647 RG 

From eqns. 10a and 9, 

(W 

R, 1: A0 I@ a (11) 

where A0 = 0.66478/(6 MO)* is constant for a given substance and temperature. The 
expansion coefficient tl is unity in ideal solvents, i.e. poor solvents at T = 8, and 
increases in real solutions with the molecular weight as CI = &P, where 0 G 4’ < 1 
and 0 < z < x 0.1. Thus 

R, N A0 . Mt (T = 0) (1 la) 

and 

R, N A8 5 IV*+= (T Z 0) (1 lb) 

It is noted that, for polydisperse coils, M obtained from sedimentation and diffusion 
(@s,n) ought to be used in any correlation with R,. A further correlation between 
radius and molecular weight is obtained from the intrinsic viscosity as 

[q]MK = R,3 = WeM3 = &03 (12) 

with k E 3/(10 rc NA) and [q] in units of cm3/g. For high molecular weight, theory 
yields a 5 value of 0.875 whence, by eqn. 10, x N 0.76. For ideal solutions a 5 value 
of 0.835 appears to be appropriate 8. By substituting for RG from eqn. 9, the 
Mark-Houwink expression [r] = K’M” = K’ a3 M* is obtained. 

Ellipsoids. The effective hydrodynamic radius is given by 

R, = (K vh M)1’3 -_Wo = Ac~M~‘~flf~ (13) 

K stands for 2.5 R = 3/(4 71 NA), i;6 is the partial specific volume including bound 
solvent, and the frictional ratio f/lfO represents the deviation from spherical shape, 
from which the axial ratio a/b is readily computed. For a given range of a/b one finds 
that f/J0 = p(a/b)” where p and m are positive and become constant for high axial 
ratios. Hence 

R, = (K rh M)1’3 &a/b)” = A0 M113 &z/b)” (14) 

In the following, p and m will specifically denote the coefficients applying to prolates. 
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Rods. Most equations for rod-like molecules of length L and diameter d are 
approximations valid for L % d. They cannot a priori be expected to apply to our 
data for proteins of M z 18 000-90 000 denaturated by sodium dodecyl sulphate 
(SDS). A general approach to transport properties of rods is to treat them as prolate 
ellipsoids of a/b = (2/3)f L/d. In the case of SDS-treated proteins, it is sustained that 
SDS binds to most proteins on the same weight-per-weight basis, so that the length 
of the rod formed increases linearly with M. Hence, for d E constant, (u/b) * p = M, 
wherefrom by eqn. 14, for homologuous rods” 

R, = (K p, M)1’3 /@4/p)” = A0 p~p-~ M1’3+m (15) 

When no diffusion data are available, R, is evaluated from [v] and M as fol- 
lows. For rigid particles [v] = v &, where the Simha shape factor v evidently increases 
with M in the case of homologuous rods. On the other hand, a rod of length L can 
be approximated by L/d touching spheres of diameter d. This is essentially the Flory 
model for coils, from which [q] is obtained as a function of M (cj eqn. 12). Thus, by 
inserting [YJ = v Vh into eqn. 12, 

(R~/x)~ = R,3 = v V,, M K’ (16) 

and” by combination with eqn. 13, for rigid molecules 

x = (ww3A!!o (17) 

Therefore, 1 is 1 .OO for spheres, and decreases with increasing a/b as V&)/V’/~ 
decreases. This means that u/b must be known to calculate R, from R, as obtained 
from eqn. 12. 

By setting v = p’(u/b)“‘, which for homologous rods equals v = $(M/p)“‘, it 
is readily seen that [q] = v Vh varies as A4”” while R, is proportional to M(m’+1)‘3. By 
means of m’ an approximate value for the actual u/b range can be evaluated from 
log v: log u/b. An average x value applied to R, will then result in rather accurate R, 
values without the need of assumptions as to the size of Vh. 

Partition us a function of molecular weight 
From the preceding, it is readily seen that data obtained from analysis in the 

same porous medium fall on the same curve when plotted as any function of KD vs. 
R, x a constant k. Thus l/Do or M(1 - Pp)/ so would apply to all structures, and 
R, or (M[#/” to coils or rods. The latter is, in fact, the basis for Btnoit et ul.‘s 
‘universal calibration” 2. By use of eqn. 6 a straight line is obtained in all cases, from 
which the pore radius R, may be calculated, provided k is known. 

In contrast, most valuable information is obtained by combining eqn. 6 with 
any of the expressions generalized as R, = A W (eqn. 8). Thus, for coils in a 0 
medium, from eqns. 6 and 1 la 

Kt = b - M3 AB/R, (18) 

whence the important bond length /3 can be calculated from the slope of a Kk vs. A4* 
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0 100 300 500 700 1000 

Fig. 1. Random coils in ideal solvents (eqn. 18) (cf Table II). Polystyrenes (A): (a) R, 905; (d) 
Dextrans (0): (b) R, 276; (c) R, 173; (e) R. 113; (f) R, 85; (g) R. 45. 

R, 113. 

plot (Fig. 1). If the exponent in the Mark-Houwink equation [q] = k’ c3M3+3z is 
known, for coils in real solutions it is seen from eqn. 1 lb that 

K$ = b - it@+” 5 AOIR, (19) 

In most cases, however, the exponent of A4 is not known a priori. Therefore, 
from eqns. 6 and 8 the GEM equation valid for all structures is given by 

- ln(b - K$) = -x In M - ln(A/R,) (20) 

TABLE I 

EVALUATION OF STRUCTURE PARAMETERS BY GEM EQUATIONS 

R, = Pore radius; A0 = 0.2714 /I/M;, where /I is the effective bond length, and Ma is the monomer 
molecular weight; A0 = (KPh)‘/3, where K = 3/(4 H NA), and pi, is the partial specific volume including 
bound solvent; a(expansion factor) = CM. f/ifs (frictional ratio) = &r/b)” = &%f/p)“, where a/b is the 
axial ratio of a prolate ellipsoid, and p = M/(a/b) for homologous rods; Do = diffusion coefficient; 
RG = radius of gyration ((s2>*). 

Equation Slope y-Intercept Evaluation 

Coils 

Ellipsoids 
and rods 

Eqn. 6 -l/K b 
Eqn. 18 - AeIR. b ;:Ro, Do 

T=tl -l/2 - ln(A~IR.) /I, ideality, RG, Do 
Eqn. 20 

T # 0 -(l/2 + z) - ln(@JR.) (a), RG, Do 

Eqn. 6 -l/Rx 
Eqn. 20 -(l/3 + m) b_lnlAopi@mR.)l 

& 
a/b, Do 
Globular vs. rod-like structure 
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This expression will be applied to experimental data for polystyrenes, dextrans and 
SDS-proteins in the following. An entirely analoguous equation has been formulated 
for gels3. 

Differing from the empirical KD : log M plots, the linear GEM correlation is 
theoretically founded and permits the evaluation of fundamental molecular param- 
eters as well as the distinction between different types of structure. These features are 
summarized in Table I. The determination of b = R’/RX is discussed below. 

MATERIALS AND DATA TREATMENT 

Polystyrenes 
The data were obtained by Moore and Arrington13 in a polar 0 solvent at 25°C 

on two different CP glasses provided by Haller. Twelve different samples were used, 
covering a m, range from 3.5 . lo6 to 1.05 . 104, with (m,Jn;i,) < 1.25 for all but 
the lightest fraction. M,, RG, Ve, VO and Vi + V0 were tabulated. V0 was evaluated 
by means of colloidal latex and I’i + Ve by benzene. Ro vs. V, plots were shown for 
both glasses. 

We calculated R, by means of eqn. 10, setting LX = 1 and M0 = 52 g/mol, as 
each styrene (Me = 104) contains two C-C bond9. The correlations according to 
eqns. 18 and 20 appear in Figs. 1 and 2, and the numerical results are given in Table 
II. 

Dextrans 
Fourteen dextran fractions, analysed by Basedow et al. l4 for li;iw, MN, mZ and 

L 
‘8 

\ 

14 
In M 

Fig. 2. The GEM plot (eqn. 20) for examples of coils and rods. Polystyrene (A): (a) RX 905 (highest M 
not shown). Dextrans (0): (b) R. 276; (e) R. 113; (f) R. 45. SDS proteins (0): (c) R, 321; (W): (d) R, 245. 
For the remaining five series, cf. Table II. 
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TABLE II 

GEM CORRELATION DATA FOR COILS AND RODS 

r = Linear correlation coefficient; N = number of data pairs; A = Ad [cm(mol/g)“2] for coils at 7’ = B; A = A~pp-~ 

[cm(mol/g)“3] for ellipsoids and rods (c$ Table I). In the dextran series the original Rap valuesi are increased by 
5% as indicated by Hailer et a1.r6. 

RH,/l&8 cm Eqn. 6: Eqn. 18: 
R,lIC8 cm A@/lP 

Eqns. 6 and 18 Eqn. 20 N 

b r Slope 1x1 A/1F8 r 
- 

Polystyrene 121 112.8 0.1789 
900 904.5 0.1793 

1.031 
1.010 

0.993 
0.991 

0.5293 0.1258 0.994 8 
0.5011 0.1598 0.982 9 

Dextran 44.1 45.0 0.1999 1.045 0.997 0.5128 0.1770 0.998 8 
83.5 84.5 0.1999 1.036 0.999 0.5013 0.1972 0.999 10 

119.2 112.6 0.1999 1.044 0.999 0.4861 0.2303 0.998 11 
164.9 173.1 0.1999 1.037 0.998 0.4750 0.2583 0.995 11 
211.4 275.6 0.1998 1.041 0.997 0.4811 0.2428 0.998 11 

SDS protein 98.5 82.0 - 0.889 0.977 0.7374 0.0197 0.970 9 
140 145.9 - 0.927 0.990 0.7015 0.0288 0.985 10 
235 245.1 - 1.005 0.987 0.7165 0.0130 0.980 10 
325 320.9 - 1.046 0.995 0.7131 0.0256 0.993 9 

[?I, were chromatographed by Haller’ 5*1 6 on glasses of five different pore radii. The 
iii, values ranged from 287 . lo3 to 1000 with (&!,,,/nN) x 1.1. V0 was measured 
by TMV elution, and Vi + V. as the difference between column and CPG volumes. 
Aqueous glycine buffer (pH 8.2) was used as eluent. The results were given as Kn vs. 
log li;i, plots only. KD values were therefore read directly from the figures, whereas 
R, was determined as follows. 

From the tabulations of Basedow et a1.l4 we obtain the Mark-Houwink equa- 
tion [q] = 0.11408 ~~~~~~~~~ (r = 0.9988) where the units of [q] are cm3/g and li;i 
is a “sedimentation average”. Using the theoretical 5 value of 0.875 and MO = 
162.18, this expression was transformed into eqn. lla, such that 

R, = 1.9945 . lOA &?zo.50016 (cm) (21) 

Since m,,. and li;i, are tabulated, the R, values could be directly applied to Haller’s 
data. Because 5 will approach unity with decreasing M, data for mz < 3000 were 
not computed. Readings for KD < 0.05 were likewise excluded. The results are il- 
lustrated in Figs. 1 and 2 and given in Table II. 

SDS-denaturated proteins 
Reduced proteins were denatured by SDS and analysed in four different CP 

glasses by Collins and Haller l 7. Vo was obtained by the use of TMV and Vi + Vo 
from tryptophan. A SDS-containing phosphate buffer (pH 7.0) was used as eluent. 
The results were given in the form of KD vs. log M plots alone. In order to evaluate 
R, we used the log R, : log A4 correlation for reduced proteins associated with 1.4 
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Fig. 3. Comparison of calculated and directly measured pore radii for eleven glasses. R. from eqn. 
from intrusion porosimetry. Data points: A = polystyrenes; l = dextrans; W = SDS proteins. 

6, hi. 

g of SDS per gram of protein given by Fish et a1.18, which for the range of M 17 000 
to 70 000 yields 

R, = 0.2455 . lop9 Mo.73 (cm) (22) 

A x value of 0.87, originally chosen2 to convert R, into R, and employed in this 
paper, will be discussed below. Since the above R, : A4 correlation is not valid for M 
< 17 000 and has not been worked out for high values, the data treatment was 
limited to ten proteins in the range 17 000 < M < 100 000. Results are shown in 
Fig. 2, and given in Table II. 

RESULTS AND DISCUSSION 

Pore size and shape 
The data compiled in Table II appear to corroborate fully the basic assump- 

tions expressed by eqns. 6 and 7. Thus, the agreement between measured and cal- 
culated pore radii, illustrated in Fig. 3, is given by (R&Rx) = 1.015 f 0.073 (N 
= 11) or 0.996 f 0.041 (N = 10). Moreover, the predicted linearity of Kb VS. R, is 
borne out by (r) = 0.993 f 0.007.* 

In all but two cases the intercept b > 1.00, as expected. The lowest b and r 

* Since eqns. 6 and 18 for coils yield identical y-intercepts and correlation coefficients, only plots 
for eqn. 18 are depicted here (cj Fig. 1). Ki vs. R. plots for rods appear in ref. 2, with K,, replacing KD. 
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correspond and give the highest deviation from unity for R,,/R,, indicating an in- 
creased experimental error margin. Specific adsorption effects, described elsewhere’ l, 
would obviously also influence the results. 

The radius 6 of the postulated diffusion layer (eqns. 2-6) is calculated from 
6 = (b - l)RX to 6.2 f 4.6 . 1OV cm and seen to increase with R,. The degree of 
increase varies for the three sets of data, probably owing to the different Vi and V0 
determinations. Experiments specifically aimed at elucidating this question and done 
under conditions where no adsorption takes place remain to be performed. 

It is relevant to compare our results with the partition coefficients for random 
coils in pores of various shapes calculated from equilibrium thermodynamics by Cas- 
assa5 and Casassa and Tagami’. This is done in Fig. 4. By the use of the same 
polystyrene experiments’ 3 as analysed here, they found the data to lie close to their 
theoretical curve for slabs, i.e. lamellar voids. The reason for this result, considered 
as improbable by the authors themselves, is the use of the gyration radius RG instead 
of R,. In fact, the two heaviest fractions would simply have been excluded from the 
RHg 121-glass if RG were the decisive parameter. By employing R, N 0.665 RG (eqn. 
lOa), their curve for cylindrical pores is approached. However, as clearly apparent 
from Fig. 4, the experimental data actually coincide far better with the theoretical 
curves for cylinders calculated from the GEM eqn. 6 for two intercept values. 

Fig. 4. Casassa’s theory (CT)5 compared with the geometrical exclusion model: (a) CT for slabs; (b) eqn. 
6 (b = 1.03); (c) eqn. 6 (b = 1.00); (d) CT for cylindrical pores. Data for polystyrenes13 in R. 905 (0) 
and Rx 113 (m) (c$ Table II). With R. N 1.5 R., all data points lie close to curve a. 
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Molecular structure 
The extension of eqn. 6 to molecular weights of random coils in ideal solvents 

(eqn. 18) is illustrated in Fig. 1, and the logarithmic GEM plot, applicable to all 
substances, is shown in Fig. 2 for coils and rods in six different glasses. It is noted 
from Table II that eqn. 18 generally gives the best linear correlation. The reason is 
that a 10% error in KD is reflected as x 5% in K$,,, but increases with KD in the 
logarithmic term to x 80% for KD 0.90. Moreover, the inherent weakness of the 
eqn. 20 plot is the sensitivity of the slope to b. This might be solved by equilibrium 
measurements of Vi from which b = 1.00 and R, becomes slightly greater than RHg. 

In spite of these factors, an average dextran slope of 0.491 f 0.015 is obtained 
from eqn. 20 (cJ Table II) and seen as a satisfactory result. Under conditions of 
non-ideality the expansion factor u can be calculated from this plot if the bond length 
/I is known. In all cases, the required R, may be determined once for all or replaced 
by the manufacturer’s RHg for narrow pore distributions, whereas the monomer 
weight MO is known. For ideality (a = l.OO), /3 is then directly calculated from the 
intercept (eqn. 20) or the slope (eqn. 18). Thus, the following values for /I/IO-* cm are 
found (cJ Table II): 

Eqn. 18 Eqn. 20 
Polystyrene 4.76 4.26 (Ru,900) 

Dextran 9.38 10.38 f 1.6 

as compared with 4.96 (307 K) and 4.86 (light scattering) for polystyrenes, and 
11.2-8.2 for Dextran B 512-Ph calculated from Granath’s results19. 

For coils in any solvent, eqn. 20 plots provide the data required to calculate 
the gyration radius RG from eqn. 9. From the same plots, the diffusion coefficient Do 
for any chemical species is readily determined by replacing R, = A 44” into eqn. 4. 

The analysis of rods is more complicated, because the original results were 
given in R,, which we had to convert into R,. A constant factor of x = RJR, = 
0.87 was applied. The average slope of 0.732 f 0.03 and A0 of 0.0218 f 0.007 . 1OV 
cm determined by the GEM plot agree perfectly with the parameters in eqn. 22. 
However, a constant x for rods is in evident contradiction with the fact that x is a 
function of a/b as given by eqn. 17. On the other hand, the axial ratios are not known. 
Since we have shown that R, varies with it4(‘+m’)‘3, and v = p’(a/b)“‘, from Mo.73 
one finds m’ = 1.19, which corresponds to a range of = 4 < (a/b) < 12, equivalent 
to x 0.960 - 0.857 or an average some 4% higher than the value employed. The fact 
that the slope from eqn. 20 is identical with the exponent of A4 in eqn. 22, may 
indicate that the use of a constant x is compensated by the experimental error. A 
detailed analysis of this question is forthcoming’ l. 

One of the fundamental conclusions is the fact that the slope of the logarithmic 
GEM plot allows the immediate recognition of the type of structure. Thus, the fol- 
lowing approximate limits can be evaluated: 

Rod-like molecules 
Random coiled polymers, T = 19 
Random coiled polymers, T # 8 
Globular proteins’ l (prolates) 

Slope 1x1 (eqn. 20) 
0.63-x 0.8 
0.50 
>0.5-w 0.6 
0.37-0.39 
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-In (l-K’/l) 

3.0 - 

2.5 - 

2.0 - 

1.5 - 

1.0 - 

0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0 
K 

Fig. 5. Generation of the empirical K: log M curve by correlating -ln(l - Kf) (eqn. 20) with K (see text). 

Polymer branching is expected to lead to lower values. The slope for rods is practi- 
cally constant for axial ratios above z 25-30. At lower values the slope and therefore 
the linearity of the logarithmic plot decreases with decreasing a/b. 

In all cases, the exclusion value for M is given by MeX = (b &/_4)‘/” where 
l/x = 2 for eqn. 18. 

Linear expressions have obvious advantages in column calibration, especially 
when a number of parameters are known beforehand. This is in clear contrast to the 
widely used, empirical, Kn VS. log M correlations. Their sigmoidal shape and char- 
acteristic quasi-linear portion are seen in Fig. 5, in which -In (1 - @) is plotted 
against K. The substantial linear part extends from K 0.05 to 0.55 and has a corre- 
lation coefficient of r = 0.9995. At higher K values the curvature increases and 
subsequent quasi-linear ranges become much narrower. The actual shape of a Kn VS. 
log M curve will therefore exclusively depend on the range covered. Its slope is nega- 
tive and approaches zero for Kn --, 1.0 and Kn + 0. No physical rationale for these 
plots appears to have been given previously. 
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